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We examine the equilibrium of a mechanical system with a finite number of 

degrees of freedom, including a flexible inextensible filament, in a stationary 
potential force field. We investigate the variations of this system’s potential 

energy when the equilibrium position of the generalized coordinates of the sys- 
tern and filament deviates to a new equilibrium position in correspondence 

with fixed variations of the coordinates mentioned. We have indicated the 
conditions under which the positive definiteness of the stated variations of po- 
tential energy guarantees the stability of the system’s equilibrium. 

It is assumed that a system 8, with Lagrange coordinates 4 (qs, . . . , qn) together 

with a filament forms a-system 8, admitting of an energy integral and an equilibrium 

Q = 0, z” (q = 0, s), Odsdl 

where the functions z” (q = 0, S) express the spatial form of the filament in equilib- 
rium and s is the arc coordinate of the filament’s point. 

We consider the problem of the stability [l] of such equilibria. In analogy with [2, 31 

the variations of the system’s potential energy are separated into two terms: 6rI (q) + 
6 II,. The term 6n (q) represents the potential energy variation of system 8, when 
passing from the equilibrium to the position q # 0, x0 (q # 0, s), where the functions 

3 (q + 0, s) express the form of the filament’s equilibrium with respect to a fixed 

q # 0. The term 6IT, expresses the variation of the filament’s potential energy when 
passing from the form z? (q # 0, s) to the form 2 (4 =/= 0, s) admissible for the same 
values of 9. 

We have formulated sufficient conditions which the functional aI& should satisfy in 
order that the positive definiteness of the function en(q) would guarantee the stability 

of the equilibrium. The definition of stability adopted is a natural generalization of 
Liapunov’s definition and ensures the smallness of the deviations of vector q and of all 
points of the filament from the equilibrium position if the initial values of these devia- 
tions and the initial variation of the kinetic energy are sufficiently small. It is shown 
that functional al& satisfies the sufficient conditions mentioned in a wide class of equi- 
libria of systems including a homogeneous flexible filament, as well as for certain equi- 
libria of a light filament in an axisymmetric centrifugal field. In two examples of sys- 

terns of the types indicated all possible stable equilibria are analyzed. 

1. Suppose that a mechanical system S, has the Lagrange coordinates q (ql, . . ., 
q,) and that a flexible inextensible filament,included into system S, , forms a system 
S,. The forces and constraints in System S, are such that it admitsoftheenergy integral 

612 
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H = Tl + T, + K + nI, 

where T (4, Q’) is the positive definite kinetic energy relative to q’, n1 (q) is the 
potential energy of system Sr, T, is the filament’s kinetic energy, and 

is the filament’s potentical energy. By s we have designated the distance reckoned 

along the filament from its point A (s = 0) to a point C (s # 0), 0 < s < 1. The 
filament’s other end, a = 1 , is denoted by B. We assume that the filament has a lin- 

ear density /J(S), p (S) n: (x(s)) is the potential energy of an element ds situated at a 

point 2 (s) of a three-dimensional space, where J: (s) is a three-dimensional vector subject 
to the system’s constraints and X (z) is a continuous function. 

Suppose that system Ss admits of some equilibrium position 4 = q’= 0, 4 (Q = 
0, s), P’ (q = 0, s) = 0 and that for any fixed p from the region qz < a2 the fila- 
ment admits of a unique equilibrium position a? (q, 8) which passes continuously into 
the equilibrium SC” (0, S) as q2 -f 0. Let us consider some admissible displacement of 
the filament’s point C with the arc coordinate a = ~1 

A (~1 SJ = 2 61, SJ - i’ (9, s2) 

and let us impose on system S, the additional constraint A (CJ, ~1) = A” which signifies 
that point c’ has been fixed in space at the point x (Q, S& = x0 (4, sl) + A”. 

We assume that the condition (A’(q, ~1))~ <‘b2 is consistent with the system’s con- 
straints and delineates in the space of vectors A (4, sr) a certain closed bounded domain 

D (4, ~1, b2), while the union of these domains as the parameter al ranges from zero to 
l forms a closed bounded domain D (q, b2). Let us clarify the assumption we have in- 

troduced by an example. Suppose that for a fixed q the filament is situated on a surface 
‘p (z, q) = 0, the filament’s ends are fixed at the points A, and B, of the surface, and the 

point C (~1) is found to be a point C, on the curve z0 (q, s). By g (I?,, Dz) we denote the 
geodesic distance between points D, and D2 of the surface and we assume that g (A,, 
B,) < 1. The system’s constraints require the relations 

cp (z” (rl, ~13 + A” (q, sJ, q) = U, g (A,, Cz) <s,, g (Cz, B,) < 1 - s1 

which, together with the condition (AD)2 < b2 , delineate the domain D (q, sl, ~2). 

By J: (s, s) = 2 (-> we denote the collection of admissible positions of the filament 
in the domain U (q, b”), by the notation x (. , A”, sl) we select the admissible posi- 
tions consistent with the additional constraint A (sl) = A”, and by the notation a? (. , 

A”, ~1) we select the possible equilibria among the curves x (* , A”, sJ. We remark 
that in this notation the curves x0 (a) and x0 (- , 0, sl) coincide for any s1 as a con- 
sequence of our assumption that the equilibrium $’ (q) is unique, 

BY 6 n2 b2(‘)9 %(.)) we denote the variation of the filament’s potential energy 
when passing from curve xr (*> to curve x2 (0) and we formulate the main assumption 
concerning the properties of the equilibria a? (- , A”, sl). Suppose that the equilibrium 

4 (a, 0, sl) corresponds to a strict (isolated) minimum 

6% (x(*)7 II;” (*, 0, s1)) > 0 (1.1) 

and that among the equilibria x0 ( l , A”, sl) we can distinguish the equilibria 
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X0 (. , A*, s&, realizing a minimum (not necessarily strict) among the curves consist- 
ent with the additional constraint A (sJ = A\” 

6IT,(z (-, A=‘, sJ, X0 (., A”, 81)) > 0 (1.2) 

and this minimum is continuous in the collection of arguments A”, sr 

fin, (X0 (., Alo, sr), X0 (., As”, 8s)) + 0 (1.3) 
as 

1 A,0 - A; f + 1 s, - s, I-+-, 0 

Lemma 1.1. When conditions (1.1) - (1.3) are fulfilled the factional &I-[, is 
positive definite and continuous in the metric 

Pz (s f.1, 2 (a1 0, sl)) = maxOGSGl (3 (-1 - 2 (*, 0, Q)s 

Proof. We specify a positive number ea < b2 and we examine the function 

p (A”, ~1) = 6 II, (X” (s, A’, sJ, 2 (. , 0, SJ) 

This quantity is a single-valued function OS the variables A’, s1 since it follows from 
condition (1.3) that even when the variables A’, s1 correspond to several equilibria 

Xj” (a, A’, sr), i = 1, 2 ,..., the values of the functional 

5132 (X,” (. , A“, sr)r 2 (a , 0, sr)) = &Is (Xk* (a, A*, s~f, 2’ (*, 0, d) 

for these curves are the same. According to (1.1) the function P (A”, sr) is positive for 

(A? > 0, and according to (1.3) it is continuo~ in the domain D (q, b2). We subdivide 
domain W into the domains 

Da - D (q, b2) f-! IIA”)z < 821, ns = D (q, b2) \ Dz 

and by ~1 (~2) we denote the minimum of function P (A”, sl) in domain WS. We consider 

some curve z1 (+), by s1 we denote one of the points of maximum with respect to s of 

the function (or (4, s) - x0 (q. s, 0, SZ))’ and we set A’ (sl) = or (q, sr) - x0 (q, sir 0, s2). 

Let function 21 (g ) satisfy the estimate 

8% (z~ (* )t Xb (* , 0, Q)) < 81 fE2) (1.4) 

The estimates (A’ (.Q))~ < E2 and P2 (xl f-), z" (=, 0, ~2)) < ~2 follow from estimates 
(1.1). (1.2). (1.4). In summary we have shown that for any ea >,O we can find Ed (E2j > 

0 such that the estimate Pz < &Z would follow from estimate (1.4). The latter property 

coincides with the definition of positive definiteness [4] of the functional HI2 in the 
metric oz. Continuity, i. e. the relation 

drrZ (rl (*), P (. , 0, ~2)) + 0 as PZ (5r (v), 2’ (s9 0, St)) - O 

serves as a simple corollary of the continuity of the function n (x). Lemma 1.1 is proved. 

Let us formulate a definition and a theorem which are natural generalizations of Lia- 
punov’s definition of stability and of Lagrange’s well-known theorem, by introducing the 
.complete metric 

P = 4” + 4-Z + T, + Pa (x (*), 2 (.I 0, %)) 

and the variation 611 (4) of the potential energy of system S, when passing from the 
equilibrium q = 0, x0 (0, s, 0, gl) to the position 

P + 0, 9 (Q + 0, a, 0, sr) 
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Definition. If for any a1 > 0 we can find ~a (ar) > 0 such that the estimate 
p (t > 0) < ~1 follows from the estimate p (t = 0) < &a , then the equilibrium is 
stable in metric p. 

Theorem. If 6lJ (4) is a positive-definite function of coordinates q, and 6lI, 

satisfies properties (1.1) - (1.3), then the equilibrium is stable in metric Q. 
To prove the theorem it is sufficient to note that positive definiteness and continuity 

of functional 6fls in metric p follow from Lemma 1.1 and the theorem’s hypotheses, 

and then to apply the results of [4]. 

2. We consider two problems for a homogeneous (p = cl,, = const) filament. 

Problem 2.1. For a fixed q the filament’s ends A (s = 0) and B (s = 1) are 
fixed in space, while the filament itself sags freely under the action of gravity. Having 
directed the J: -axis horizontally to the right and they -axis vertically upward and loca- 

ting both axes in a vertical plane containing the points A and B, we obtain n, = gy. 
Problem 2. 2. For fixed 2 the filament’s ends A and B are fastened to a plane 

P rotating with constant angular velocity o around a fixed straight line 5, while the 
filament itself slides freely on plane P. Having directed the y-axis perpendicularly 

to the z-axis in plane P, we obtain na = - (‘/,)o”y”. 
Denoting the coordinates of points A a,nd B by (x1, yi) and (x2, ~a), respectively, 

we pose the problem of seeking curves yyt,,cs, which realize the 
integrals X2 

subject to the isoperimetric conditions 

In order that the desired curves y:r),~~) (x) corresponding to an 

among the extremal integrals 
Jn 

absolute minima of the 

absolute minimum lie 

two additional conditions suffice. 
XI 

2.3. The curves y&~ (z) admit of a continuous first derivative in Z. 
2.4. They have no rectilinear segments. 
We assume that &a > z1 and we briefly sketch a plan for proving the existence of 

curve t&j (z)’ and the fulfillment of properties 2.3, 2.4. 
2.5. We replace the filament by a system of homogeneous segments Ai, i = 1, 

. . ., p, joined by ideal hinges and having the same length .? / p. After this the func- 
tional nil) becomes the function &,I (a), where r-r is a vector of dimension p and its 

components ai are the angles between the segments Ai and the z-axis, constrained by 
the junction conditions 

(1 / p) (cos a, + . . . + CO.3 ap) + Xl - x2 = f1.p (a) = 0 

(I / p) (sin a, + . . . + sin up) + y1 - y2 = f2,~ (4 = 0 

Let us show that the absolute minimum is reached on a strictly convex polygonal line. 
In fact, if the polygonal line is concave between hinges g,, g,, then the symmetric ref- 
lection of the polygonal line relative to the middle of segment g,, g, decreases the 



616 G.K.Pozharitskil 

potential energy. It can also be shown that at the absolute minimum not one of the seg- 
ments Ai+l can be a prolongation of segment Ai, i.e. the polygonal line is strictly 
convex and has no vertical segments. The proof is also carried out by contradiction by 
making an admissible displacement lessening the potential energy. 

From what has been presented above it follows that the absolute minimum of the func- 

tion @‘p (_a) 1’ ies at a stationary point of the function 

(v17 Vs are certain constants). An analysis of the equations of the stationary point shows 
that there exists only one strictly increasing sequence ui, P, . . . , up, P satisfying the 

stationarity condition. This sequence corresponds to a convex polygonal line. It can be 

shown that the step function 
i-l 

%(4 = %?I, XE 2 COSclj,p, ( $Osc%j,p) 

expressing the dependence of the polygonal line’s angle of inclination on the coordinate 

5, converges as p - co to some strictly increasing function a (x), continuous and con- 

tained within the limits + n/2 > a > -_x / 2. This completes the proof of proper- 
ties 2.3, 2.4 for the curve y$ (x). 

The proof of properties 2.3, 2.4 in Problem 2.2 can be successfully carried out by an 
analogous scheme, but under the essential assumption that points A and B are not sepa- 
rated by the z-axis in such a way that by a suitable choice of the p-axis we can simul- 
taneously satisfy the estimates ys > yt > 0. Under such a choice of the axis we can 
prove thft_ the function ytzjo (z) is strictly concave. (a (x) decreases monotonically). 
Curve yu) (z) is the very well-known catenary ; the structure of the curve ZJ(“~, (z) 

needs detaiiing. 

Let points A and B lie on the s-axis, A (0, 0) and B (E > 0, 0), then [ES] all 
stationary curves of functional G@' are found in the class of elliptic sines 

y = vOL2 - aI2 sn (x 1/z / a,k’) 

I,‘2 = 1 - k2 9 k2 = (b12 - al”) / (b12 + al”) 

The quantity k2 (2 / E) is determined uniquely from the equation 

(2.1) 

The function t = sn z is the inverse of the elliptic integral 

z z s (1. - t2)-‘,2(1 - /&2)-?z& 
0 

Note that k2 (I / E) increases monotonically from 0 to 1 as 1 / 5 increases from 1 to 
x). For given I and E the constant ui can take a countable set of values 

1 a,(m) = E v% / 2mKk’, m-1,2,... 

K = !((I - t")(l - kzt2))-‘2 dt 
u 
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This means that a countable set of equilibria exist. The firat three equilibria are shown 
in Fig. 1; the second and third halfwaves are obtained from the first by a similarity 
transformation relative to the point A (b, 0) with coefficients I/!, and I/,. 

Geometrically ii is obvious that the 

minimum of the potential energy is 
reached on the first halfwave. From the 

preceding it follows that it is absolute 
minimum ; the strictness of this is evi- 
dent. 

- 
‘v 

Fig. 1 

Let us show that the second, third, and 

remaining curves do not realize a mini- 
mum at all. To do this we shift the fila- 
ment from the second position (m = 2) 
to a neighboring admissible one by a 
similarity transformation of the upper 

and lower halfwaves relative to points 
A and B with coefficients 1 + u and 

1 _ n, where 0. < u ( 1. Denoting the potential energy of the second equilibrium 

position by @) (m = 2) *we can easily verify that the potential energies of the tram- 

formed halfwaves take the values l/s (1 + u)” @‘(tn = 2),and l/s (1 - 43fIi2' 

(m -I Z),while under this transformation the variation A@) equals 3$ntf (m = 
2) < 0,since 

rIf) (m = 2) < 0 

2.6, We now show that if points A and B are not separated by the x-axis, then 

there always exists a unique curve r of length E, belonging, to within a shift along the 
x -axis, to family (2. l), passing through A and B , and having no more than one half- 

wave on the segment [x1, &:,I. Denoting 

Ax=x,-q>O, Ay=y,-y,>O,yJAx=~,AylAx=2; 

we examine the family of straight lines 

y = 52 + e, e>O (2.2) 

depending on a positive parameter e, and a subfamily of family (2. l)? depending on the 

parameter b;2, in which the equality aI = bra - ‘i distinguishes the curves with unit 
amplitude 1 = b12 - u12. 

If the initial (for J: = 0) value of the derivative on the line of the subfamily indicated 
satisfies the estimate 

yx’(x = 0) = r/z/l/b+ I>5 (2.3) 

then the straight line y = 5x + e has two points (~1 (e), y1 (e)) and (xs (e), y2 (e)) 
of intersection with the first halfwave, and the ratio y1 (e) / (x2 (e) - x1 (e)) increases 
monotonically from zero to infinity as the parameter e increases from zero to thevalue 
ei for which the straight line y = cx + e, is tangent to the first halfwave, while the 
intersection points merge. This signifies that in accordance with estimate (2.3) the equa- 

lity rl y= 2/l (4 / [a2 (e) - a4 (41 ’ is fulfilled for a unique value of P for any 6:“. A 
similarity transformation relative to point (0, 0) with coefficient 
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and a shift along the x-axis lead to a curve r1 on which the junction conditions are 
fulfilled and which belongs, to within a shift, to family (2.1). By decreasing the quantity 
6:” to the value b(;L) (increasing the initial derivative) and repeating the operation, we 
obtain curve ra, where it is obvious from the construction that the length of the arc 
(LB), = 1, > I, = (A%),(the length of an arc of curve f, ). Thus the ratio 

1 I p’~ Ax2 i- Ay’ is a strictly monotonic function of the parameter b2i, ranging over 
the interval (1, co) as 6i2 varies within the limits 5 < v z/ v 6,a - 1 < 00, 

i.e. the curve I? exists and is unique. 
2.7. The curve I? realizes the desired absolute minimum, i.e. is *the curve y(s)’ (x). 

Let us prolong curve r by means of the elliptic sine equation up to intersection with 
the x-axis at points A’ and B’. We obtain a curve r’ of length l’, which, as was shown 

above. realizes the absolute minimum for a filament of length I’ with fastenings at A’ 

and B’. It is obvious that the admissible deformations of curve r lie among the admis- 
sible deformations of curve r’. Consequently, the curve r realizes the absolute mini- 

mum. In summary, the two assertions can be taken as established by the analyses made. 
2.8. For any admissible constraint A (q, sl) = A.“, in Problem 2.1 there exists a 

unique curve X” (e, A”, ~1). This curve consists of two segments of catenaries passing 

through the point C, (9 (q, s) + A”) and lying in vertical planes containing the pairs 

(A, G), (C,, B). 
2.9. In Problem 2.2, for the conditions ys > yr > 0 and for a filament situated 

along the curve y(a)“(x), there also exists a unique curve X” (- , a’, s,) which consists 
of two incomplete halfwaves of the elliptic sine. The uniqueness of the curve indicated 
is a consequence of the preceding analyses for all regions (A”)” < b2 not containing 
points y < 0. If one or both points (yl = 0, ys > 0) A and B lie on the x-axis, 
then the region (Ao)2 < b2 always contains the displacements of point c (si) in the 

region y < 0 for values of Si sufficiently close to zero. 

Denoting the coordinates of point C, by xs, y3 , we select, for ys > 0 , a curve X0+ 
in the form of two incomplete positive halfwaves, while for y3 < 0 we reflect the 
point B (x2, y2) into the point B’ (x2,- ya) and we select the curve in the form of 

two incomplete negative halfwaves, tracing them through the pairs (A, Cl), (Cl, B’). 
Any curve connecting the points (C,, B) must intersect the x-axis at least once at a 
point E. By reflecting the curve (B, E) symmetrically with respect to the Z-axis, we 

obtain the curve (A, E, B’), whose potential energy is obviously not less than the ener- 
gy of curve X‘ -. Thus, property (1.2) is fulfilled for the curves X0-. Obviously, property 

(1.3) is also valid. Curve X0- is not admitted by junction conditions when ys > 0 
and formally does not belong to the class of X”. However, in the proof of Lemma 1.1, 
we nowhere made use of the fact that the curves X” are admissible equilibria. The 
latter requirement is not necessary, although it sharply facilitates the search for curves 

satisfying conditions (1.2), (1.3). 

8. Let us consider a particular case of Problem 2.1, introducing an additional nota- 
tion. Suppose that a heavy rigid body (a pendulum) can rotate around a horizontal O- 
axis and that the points A and B of fastening of the filament’s ends are located on the 
rigid body in a vertical plane perpendicular to the axis of rotation. Let O1 be the mid- 

dle of segment AB, a be the length of the segment AB,, ml, m2 be the masses of 
the body and of the filament,respectively, 1 be the length and m2 / I! the density of 

the filament, C; be the center of gravity of the body, in, be the additional point mass 
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located in the point 0, , and b be the distance GO. From point 0, 
zontal x-axis to the right and a vertical y-axis upward, and by cp we 
between the direction A, B and the x -axis. 

In this coordinate system the junction conditions take the form 

21,s = * (a / 2) cos cp, yi, a = f (a / 2) sin 

If the filament is located on a convex (a > 0) catenary 

y = a ch ](J: - p) / al - y 

619 

we draw a hori- 

denote the angle 

cp (3.1) 

(3.2) 

then the quantities a, p, y are determined as functions of parameters a, I and of 
angle ‘p by the junction conditions (3.1) and by the equation for length preservation 

I = a (sh [(xl - p) / al - sh I(x, - f3) 1 al) (3.3) 

The sum nI, f n, of the potential energies of the body and filament can be represen- 
ted as the sum Ha -/- HI, of the potential energy of the body with an additional mass 

“2 and the potential energy of the filament at a fixed point 0,. When computing ener- 
gy n, we shall examine two different methods of fastening. 

3.1. The straight line OG passes through point 01, perpendicularly to segment 
AB. Then, assuming that the center of gravity G lies above point 0 when rp = 0, 
we obtain (3.4) 

n,(i) = (m, + m2) gb cos cp, II,(l)‘= --Mp = - (ml + m,)gb sin cp 

where the derivative II,(i)’ equals the moment of the force of gravity relative to point 
0, taken with opposite sign. 

3.2. The straight line OG coincides with the straight line AB. Then, assuming 

that the center of gravity G lies to the left of the point 0 when v = 0 , we obtain 

us@) = -(ml + m,)gb sin cp, fls(s)‘=--Ma@)= -(m,+m,)gbcoscp (3.5) 

The term n, and the moment iM, = - &’ have the forms 

Calculations deduce the equalities 

II,’ = (u” / 2) sin cp cos cp U1 (2) 

u1 = (z ch z - sh zj I sh z, 2. : 

1/P - a2 sirl” (p / a cos cp p= sh z /z 

zzz 

(3.6) 

(3.7) 

(3.3) 

(n cos cp) / 2 u (3.9) 

(3.10) 

Formulas (3.9) indicate the form of the function U, (z) and the relation between r 
and the quantities a, cp, a, while Eq. (3.10) defines the unique function z (sin q, 
L! / a) > 0 increasing monotonically in both arguments in the domain D [sin tp > 0, 
1 / a > 0] with observation of the relations 

2 (sin cp > 0, Z / a) --, 00 as Z I a ---f 00 (3.11) 



620 G.K.Pozharltskll 

2 (sin cp, 1 / a > 1) -j 00 as sin ‘p ---f 1 (3.12) 

Denoting the derivatives with respect to ‘p of the sums II,(i) + &, K&s) + H4 by 

rJ(l)‘, &,j’, respectively, we obtain 

lI;i, = gm, sin q [(a” / 21) u1 ( z cos cp - b (m, + m,) / m,l ) (3.13) 

%, = gm, cos cp [(a” I 21)~~ (z) sin rp - b (ml + mJ / m,l (3.14) 

Note that we need to set --yin rp in formula (3.8) in case sin tp < 0 , therefore, 
when cp < 0 we must change the sign of the first term with the brackets in formulas 

(3.13), (3.14). 

3.1.1. We examine the details of the analysis of Case 3.1. In this case there ex- 

ist two equilibria: an upper one (q = 0) and a lower one (cp = x). The existence of 

a sloping (n / 2 > 9 > 0) equilibr ium depends on the existence of a zero in the bra- 
ckets. Replacing cos cp in the brackets from Eq. (3.10) in the form 

*- 
COST= ~ZI.L-uz/.~~(shz/z)2-l 

we obtain that the question of the existence of a sloping equilibrium is equivalent to 
the question of the existence of a positive solution of the equation 

ue (z) = zui (2) / J&ha 
-- 

z-,z2-2bl(ml+m2)/a~Z2-u2m2=0 

Computing the derivative us’ (z), we obtain 

us’(z) = z 
(sh2 z - Z+ \ 

The sign of the derivative us’ ( ) ’ h z is t e same as the sign of the function 

ua (2) = 2 sh z / z - ch z - z/sh z 

which admits of the representation in the form 

us(z) = - (z shz)-1fl$3(2z)2”(& - ’ 4 (2rl - I)! ) 

The last equality determines the estimate U:(Z) < 0, which together with the equality 

lim (zul (z) / I/shs z - 9) = 0 as z -+ oo 

enables us to make a deduction. 

If us (Z (sin cp = 0, 1 / a)) > 0, then the upper (tp = 0) equilibrium position 
is stable, while the’sloping ( 3t / 2 < cp < 0) one exists and corresponds to the maxi- 
mum of the potential energy. 

If u, (z (sin cp = 0, I / a)) < 0, h t en the upper (tp = 0) equilibrium position cor- 
responds to the maximum of the potential energy, while the sloping equilibrium does 
not exist. 

The lower (q = n) equilibrium position is always stable. Two problems are of inte- 
rest. 

Problem 3.1.2. For a fixed filament mass and for a distance a between the 
‘fastening points, select the length I so as to maximize the restoring moment arizing 
under a deviation from the upper equilibrium. 

Replacing I in the brackets in (3.13) by the formula 1 = a sh z / Z, we arrive at 
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the problem of the maximum with respect to z of the function 

u4 (z) = zu1 (z) / sh z 

The sign of the derivative uql ( z 1s t ) ’ h e same as the sign of the function 

u5 (z) = z - 2 th z / (2 - th2 z) 

The function r.z5 (z) decreases strictly Tom zero to the point th z = vem and then 

increases strictly to 00. This means that the function u4 (2) admits of a unique station- 
ary maximum for z > 0 at the point 

zal z 2:51, (1 1 a)1 z 1.48 

This equation determines the optimal length of the filament in the sense of Problem 

3.1.2. 
Problem 3.1.3. For fixed m,, I ,select the distance a which maximizes the 

restoring moment under a deviation from the upper equilibrium. 

Problem 3.1.3 is equivalent to the problem of the maximum in the region z > 0 

of the function us (z) = zaul (z) / sha z. The sign of the derivative us’ (z) is thesame 
as the sign of the function 

n,(s) = & (- 1 + $Qzai) 

where within the parentheses there occurs a series with positive coefficients ai, conver- 

ging uniformly in any segment 1 Z I< N and tending to co as z -+ 00. This also indi- 
cates the existence of a unique stationary maximum of the function u,, (z) for zaa z 

1.4, (1 I u)~ z 1.23. 
3.2.1. The upper (cp = --n/2) and lower (rp = 3t / 2) equilibrium positions 

are obvious for fastening 3.2, while the question of the existence of a sloping equilibri- 
um reduces to the question of the existence of a positive root of the equation 

ZZ, (z) = sin cp u1 (z) - 2bl (m, + m,) / a2m2 = 0 

sin2 cp = 1 - (I2 - ~2) / ((sh z / z)” - 1) ~2 

The function U, (z) grows monotonically in z from zero and tends to unity as z + co 
((p --_, ar / 2). Denoting z+ = u2ms - 2 bl (m, i- m2), we make some deductions. 

Sloping equilibrium positions exist and are stable when Va > 0, while the upper and 
lower ones correspond to the maximum of I&,). There are no sloping equilibria when 
v, < 0; the lower one is stable, and the upper bne corresponds to the maximum of l&,1. 
It should be noted that in the upper and lower positions the filament hangs down along 
a straigh line which cannot be found directly from the filament’s equilibrium conditions 
but only as the limit of its equilibria as 1 q - x2 1 + 0. 

If the body has been suspended from its center of gravity G,, while the distance 

G, 0, = & (a / 2), 0 < h3 < 1, then the condition v1 > 0 takes the particularly 
simpre form a / 1 > 3Ls. The last estimate shows that the stable sloping equilibria of 
the filament in those cases when the filament is fastened at the ends A and B of a 
weightless rod and the rotation axis is located close to one of the ends, exist only for 
sufficiently short filaments, 

4._ An example of Problem 2.2 is a point mass m1 sliding along the 17: -axis under the 
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action of a force F (5) (depending on the coordinate E = x2 of mass m,and directed 
to the right, F (E > 0) > 0) and a filament of density no= n?s / 2, fastened at 
points ,4 (21 = 0, ?/l = 0) and B (x8 = E > 0, ?/z = 0). It is assumed that the 
filament can slide in a plane P rotating with constant angular velocity o around the 
I(: -axis and containing the ?/-axis. 

By n[a (g) we denote the potential energy of the first halfwave and by I],’ (5) its 
derivative with respect to g. As a corollary of the equilibrium conditions we have the 

equations &’ (E) = F (E) = (T dx/ds),+. The first equation expresses the condition 
of stationarity of the function 11, (E) + iI, (Q t while the second expresses the equal- 
ity of the horizontal projection of the tension (r’ at the right {:r: -- 5) end of the fila- 

ment and the force F(g). On the other hand, it follows from the filament’s equilibrium 
conditions (51 and from Eqs. (2.1) that the projection T do / ds is constant along the 
filament and 1 

As we noted in Sect. 2, the quantity k” (E / 1) decreases monotonically 

Obviously, the product k’K also decreases and, therefore, the variation 
to 1 increases the detivarive &’ (E) from zero up to the value 

as 5 increases. 
of E from zero 

Assume that F (E) is nanincreasing and continuous, then the condition v2 - F (1) > 
0 ensures the existence of a certain stable equilibrium & < E in which the filament 

has the form of a halfwave, while the equilibrium E = f corresponds to the maximum 

of the potentiaf energy 11, + If,. If, however, v, - F (1) < 0, the equilibrium E = 
1, in which the filament is rectilinear, becomes stable. 
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